
J Math Chem (2010) 47:276–294
DOI 10.1007/s10910-009-9567-8

ORIGINAL PAPER

Global behaviors of Monod type chemostat model
with nutrient recycling and impulsive input

Zhidong Teng · Rong Gao · Mehbuba Rehim ·
Kai Wang

Received: 18 February 2009 / Accepted: 29 June 2009 / Published online: 26 August 2009
© Springer Science+Business Media, LLC 2009

Abstract In this paper, we consider the global behaviors of Monod type chemostat
model with nutrient recycling and impulsive input. By introducing a new study method,
the sufficient and necessary conditions on the permanence and extinction of the micro-
organisms are obtained. Furthermore, by using the Liapunov function method, the
sufficient condition on the global attractivity of the system is established. Lastly, an
example is given, the numerical simulation shows that if only the system is permanent,
then it also is globally attractive.

Keywords Chemostat · Nutrient recycling · Impulsive input · Permanence ·
Extinction · Global attractivity

1 Introduction

The chemostat is a very important apparatus used to study the growth of
microorganisms in a continuous cultured environment in a laboratory. It may be viewed
as a laboratory model of a simple lake with continuous stirring. Chemostat models have
attracted widely the attention of the scientific community, since they have a wide range
of applications, for example, waste water treatment, production by genetically altered
organisms (like production of insulin), etc. The growth in a chemostat is described
by the systems of ordinary differential equations or functional differential equations.
Generally, in a chemostat the loss or death of biomass is attributed to the washout
and the nutrient and its consumer are washed out of the system at a very high rate.
However, when we try to model a natural lake system the washout rate tends to be low.
When the washout rate is low, the dead biomass (death may be natural) remains in the
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system and there is every possibility for the bacterial decomposition of dead biomass
resulting in the regeneration of nutrient. Thus, we may introduce a recycling of dead
biomass as nutrient. The chemostat models with nutrient recycling have been exten-
sively investigated by many researchers. The studied main subjects are the persistence,
permanence and extinction of microorganisms, global stability and the existence of
periodic oscillation of the systems, etc. Many important and interesting results can be
found in articles [1–7,11–18] and the references cited therein.

In recent years, many scholars pointed out that it was necessary and important to
consider biological models with periodic perturbations, since these models might be
quite naturally exposed in many real world phenomena. In fact, almost perturbations
occur in a more-or-less periodic fashion. However, there are some other perturbations
such as fires, floods, and drainage of sewage which are not suitable to be considered
continually. These perturbations bring sudden changes to the system and often be
characterized mathematically in the form of impulses. Systems with sudden pertur-
bations are involving in impulsive differential equations. The chemostat models with
impulsive input perturbation have been studied in many articles, see [8–10,19–26]
and the references cited therein, where many important and interesting results on the
persistence, permanence and extinction of microorganisms, global stability, the exis-
tence of periodic oscillation and dynamical complexity of the systems are discussed.
In particular, in [19], the following Monod type chemostat model with impulsive input
is discussed

S′(t) = −QS(t) − µm S(t)x(t)

δ(Km + S(t))
, t �= nT,

x ′(t) = x(t)
µm S(t)x(t)

Km + S(t)
− Q), t �= nT,

S(t+) = S(t) + DS0, t = nT,

x(t+) = x(t), t = nT .

The sufficient conditions on the permanence and extinction of the system are estab-
lished, see Theorems 3.1–3.3 in [19].

However, we observe that the research on the chemostat model with impulsive per-
turbations and nutrient recycling is not too much yet. Therefore, as a result, in this
paper we consider the following Monod type chemostat model with nutrient recycling
and impulsive input

S′(t) = −DS(t) − µm S(t)x(t)

δ(Km + S(t))
+ bγ x(t), t �= nT,

x ′(t) = µm S(t)x(t)

Km + S(t)
− (D + γ )x(t), t �= nT,

S(t+) = S(t) + DS0, t = nT,

x(t+) = x(t), t = nT,

(1.1)

For system (1.1) we will investigate the permanence, extinction and the global
asymptotic stability. we will establish the sufficient and necessary conditions for the
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permanence and extinction and the sufficient condition for the global asymptotic sta-
bility. We also will give an example and numerical simulation to show when the
sufficient condition on the global asymptotic stability does not hold, the system still
may be globally asymptotically stable.

This paper is organized as follows. In the following section we will give several
useful lemmas. In Sect. 3 we will state and prove our main results on the extinction,
permanence and global asymptotic stability. In Sect. 4, we will discuss an example
and give the numerical simulation.

2 Preliminaries

In system (1.1), t ∈ R+ = [0, ∞), n ∈ N , N is the set of nonnegative integers, S(t)
denote the limiting nutrient concentration at time t, x(t) denote the plankton concen-
tration at time t . S0 is the input concentration of the limiting nutrient, T is the period
of pulsing, D is the washout rate, DS0 denote the input concentration of the limiting
substrate per unit of time, b is the fraction of the nutrient recycled by bacterial decom-
position of the dead plankton, δ denotes the ratio of microorganism produced to the
mass of the substrate consumed. Obviously, we have 0 ≤ b ≤ 1 and 1

δ
≥ 1, γ is the

death rate of plankton, so D + γ represents the total loss rate of the plankton. In this
paper, we always assume that all parameters in system (1.1) are positive constants.

In addition, in system (1.1), S(nT +) = limt→nT + S(t), x(nT +) = limt→nT + x(t),
S(t) is assumed to be left continuous at t = nT , that is, S(nT ) = limt→nT − S(t), and
x(t) is assumed to be continuous at t = nT .

Let R2+ = {(x1, x2) ∈ R2 : x1 > 0, x2 > 0}. On the positivity of solutions for
system (1.1) we have the following result.

Lemma 2.1 For any (S0, x0) ∈ R2+, the solution (S(t), x(t)) of system (1.1) with
initial condition S(0+) = S0 and x(0) = x0 is positive, that is, S(t) > 0 and x(t) > 0
for any t > 0.

The proof of Lemma 2.1 is simple, we hence omit it here.
We consider the following impulsive differential equation

u′(t) = −d1u(t), t �= nT, t ∈ R+,

u(t+) = u(t) + d2, t = nT, n ∈ N .
(2.1)

We have the following result.

Lemma 2.2 Assume that T and di (i = 1, 2) are positive constants, then Eq. 2.1 has
a positive periodic solution

u∗(t) = d2e−d1(t−nT )

1 − e−d1T
for all t ∈ (nT, (n + 1)T ], n ∈ N ,

which is globally uniformly attractive, that is, for any constants ε > 0 and M > 0
there is a T = T (ε, M) > 0 such that for any t0 ∈ R+ and u0 ∈ R with |u0| ≤ M
one has

123



J Math Chem (2010) 47:276–294 279

|u(t, t0, u0) − u∗(t)| < ε for all t ≥ t0 + T,

where u(t, t0, u0) is the solution of Eq. 2.1 with initial condition u(t0) = u0.

Proof Calculating the solution u(t) of Eq. 2.1 with initial condition u(0) = u0 on
t ∈ [0, T ], we have

u(t) = u0e−d1t for all t ∈ [0, T )

and

u(T +) = u0e−d1T + d2.

Let u(0) = u(T +), then we have u0 = d2
1−e−d1T . Therefore, Eq. 2.1 has the positive

T -periodic solution as follows

u∗(t) = d2e−d1(t−nT )

1 − e−d1T
for all t ∈ (nT, (n + 1)T ], n ∈ N .

Obviously, u∗(t) ≤ d2
1−e−d1T for all t ∈ R+.

For any constants M > 0, let u(t, t0, u0) is the solution of Eq. 2.1 with initial
condition u(t0) = u0, where t0 ∈ R+ and u0 ∈ R with |u0| ≤ M . Let v(t) =
u(t, t0, u0) − u∗(t) then for any t ≥ t0 we have

v′(t) = −d1v(t), t �= nT,

v(t+) = v(t), t = nT .

Hence,

v(t) = (u0 − u∗(t0))e−d1(t−t0) for all t ≥ t0.

Consequently,

|u(t, t0, u0) − u∗(t)| ≤
(

M + d2

1 − e−d1T

)
e−d1(t−t0) for all t ≥ t0.

For any constants ε > 0, choosing

T = T (ε, M) = 1

d1

(
ln

(
M + d2

1 − e−d1T

)
− ln ε

)
,

then we finally have

|u(t, t0, u0) − u∗(t)| < ε for all t ≥ t0 + T .

This completes the proof of Lemma 2.2. 	
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Further, on the ultimate boundedness of all positive solutions of system (1.1) we
have the following result.

Lemma 2.3 For any solution (S(t), x(t)) of system (1.1) with initial value (S(0+),
x(0)) ∈ R2+, we have

lim sup
t→∞

S(t) ≤ M, lim sup
t→∞

x(t) ≤ δM,

where M = DS0

1−e−DT .

Proof Let (S(t), x(t)) be any solution of system (1.1) with initial value (S(0+),
x(0)) ∈ R2+. Define

V (t) = S(t) + 1

δ
x(t).

Then we have

V ′(t) = −DS(t) − D

δ
x(t) + bγ x(t) − γ

δ
x(t)

= −DV (t) + γ

(
b − 1

δ

)
x(t)

≤ −DV (t), t �= nT, n ∈ N .

V (t+) = V (t) + DS0, t = nT .

From the comparison theorem of impulse differential equations, we have V (t) ≤ u(t)
for all t ≥ 0, where u(t) is the solution of the following comparison equation

u′(t) = −Du(t), t �= nT, n ∈ N .

u(t+) = u(t) + DS0, t = nT .
(2.2)

with initial condition u(0+) = V (0+). From Lemma (2.3), Eq. 2.2 has a unique glob-
ally uniformly attractive positive T -periodic solution

u∗(t) = DS0e−D(t−nT )

1 − e−DT
for all t ∈ (nT, (n + 1)T ], n ∈ N . (2.3)

Hence, we have u(t) → u∗(t) as t → ∞. From this, we finally have

lim sup
t→∞

V (t) ≤ lim sup
t→∞

u∗(t) ≤ DS0

1 − e−DT
.

This completes the proof of Lemma 2.3. 	
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3 Main results

For system (1.1), if we choose x(t) ≡ 0 then system (1.1) becomes to the following
subsystem

S′(t) = −DS(t), t �= nT,

S(t+) = S(t) + DS0, t = nT,
(3.1)

System (3.1) has a unique globally uniformly attractive positive T -periodic solution
u∗(t) which is given in (2.3). Hence, system (1.1) has a T -periodic solution (u∗(t), 0)

at which microorganism culture fails. On the global attractivity of (u∗(t), 0) for system
(1.1), we have the following result.

Theorem 3.1 Suppose

T∫
0

(
µmu∗(t)

Km + u∗(t)
− (D + γ )

)
dt ≤ 0. (3.2)

Then periodic solution (u∗(t), 0) of system (1.1) is globally attractive.

Proof Let (S(t), x(t)) be any positive solution of system (1.1). Define function as
follows

V (t) = S(t) + 1

δ
x(t),

then similar to the proof of Lemma 2.3 we obtain V (t) ≤ u(t) for all t ≥ 0, where
u(t) is the solution of Eq. 2.2 with initial value u(0+) = V (0+), and u(t) → u∗(t)
as t → ∞. Hence, there exists a function α(t) : R+ → R satisfying α(t) → 0 as
t → ∞ such that

V (t) ≤ u(t) = u∗(t) + α(t)

for all t ≥ 0. From the definition of V (t) we further have

S(t) ≤ u∗(t) + α(t) − 1

δ
x(t).

From the second equation of the system (1.1) we obtain

x ′(t) ≤ x(t)

(
µm

(
u∗(t) + α(t) − 1

δ
x(t)

)
Km + u∗(t) + α(t) − 1

δ
x(t)

− (D + γ )

)
. (3.3)
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From condition (3.2) we obtain for any ε0 > 0

T∫
0

µm
(
u∗(t) − 1

δ
ε0

)
Km + u∗(t) − 1

δ
ε0

dt − (D + γ )T < 0.

Since limt→∞ α(t) = 0, we can obtain

lim
t→∞

⎛
⎝

t+T∫
t

µm
(
u∗(t) + α(t) − 1

δ
ε0

)
Km + u∗(t) + α(t) − 1

δ
ε0

dt − (D + γ )T

⎞
⎠

=
T∫

0

µm
(
u∗(t) − 1

δ
ε0

)
Km + u∗(t) − 1

δ
ε0

dt − (D + γ )T < 0.

Hence, there exist constants η > 0 and T0 > 0 such that when t ≥ T0

t+T∫
t

µm
(
u∗(t) + α(t) − 1

δ
ε0

)
Km + u∗(t) + α(t) − 1

δ
ε0

dt − (D + γ )T ≤ −η (3.4)

and |α(t)| < 1.
If x(t) ≥ ε0 for all t ≥ T0, then from (3.3) we obtain

x ′(t) ≤ x(t)

(
µm

(
u∗(t) + α(t) − 1

δ
ε0

)
Km + u∗(t) + α(t) − 1

δ
ε0

− (D + γ )

)
. (3.5)

For any t ≥ T0, we choose an integer p ≥ 0 such that t ∈ [T0 + pT0 + (p + 1)T ),
then integrating (3.5) from T0 to t , from (3.4) we can obtain

x(t) ≤ x(T0) exp

⎧⎪⎨
⎪⎩

t∫
T0

(
µm

(
u∗(t) + α(t) − 1

δ
ε0

)
Km + u∗(t) + α(t) − 1

δ
ε0

− (D + γ )

)
dt

⎫⎪⎬
⎪⎭

= x(T0) exp

⎧⎪⎨
⎪⎩

⎛
⎜⎝

T0+pT∫
T0

+
t∫

T0+pT

⎞
⎟⎠

(
µm

(
u∗(t) + α(t) − 1

δ
ε0

)
Km + u∗(t) + α(t) − 1

δ
ε0

− (D + γ )

)
dt

⎫⎪⎬
⎪⎭

≤ x(T0) exp(−ηp) exp

⎧⎪⎨
⎪⎩

t∫
T0+pT

(
µm

(
u∗(t) + α(t) − 1

δ
ε0

)
Km + u∗(t) + α(t) − 1

δ
ε0

− (D + γ )

)
dt

⎫⎪⎬
⎪⎭

≤ x(T0) exp(−ηp) exp(σ0T ), (3.6)
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where

σ0 = µm
(
M + 1 − 1

δ
ε0

)
Km + M + 1 − 1

δ
ε0

− (D + γ )

and constant M is given in Lemma 2.3. Since p → ∞ as t → ∞, we obtain x(t) → 0
as t → ∞ from (3.6), which leads to a contradiction. Hence, there is a t∗ ≥ T0 such
that x(t∗) < ε0.

Now, we claim that there exists a constat M0 > 1 such that x(t) ≤ ε0 M0 for all
t ≥ t∗. In fact, if there exists a t1 > t∗ such that x(t1) > ε0 M0, then there exists a
t2 ∈ (t∗, t1) such that x(t2) = ε0 and x(t) > ε0 for t ∈ (t2, t1). Choose an integer
p ≥ 0 such that t1 ∈ [t2 + pT, t2 + (p + 1)T ). Since for any t ∈ (t2, t1)

x ′(t) ≤ x(t)

(
µm

(
u∗(t) + α(t) − 1

δ
ε0

)
Km + u∗(t) + α(t) − 1

δ
ε0

− (D + γ )

)
,

integrating this inequality from t2 to t1, from (3.4) we can obtain

x(t1) ≤ x(t2) exp

⎧⎨
⎩

t1∫
t2

(
µm

(
u∗(t) + α(t) − 1

δ
ε0

)
Km + u∗(t) + α(t) − 1

δ
ε0

− (D + γ )

)
dt

⎫⎬
⎭

= x(t2) exp

⎧⎪⎨
⎪⎩

⎛
⎜⎝

t2+pT∫
t2

+
t1∫

t2+pT

⎞
⎟⎠

(
µm

(
u∗(t) + α(t) − 1

δ
ε0

)
Km + u∗(t) + α(t) − 1

δ
ε0

− (D + γ )

)
dt

⎫⎪⎬
⎪⎭

≤ x(t2) exp(−ηp) exp

⎧⎪⎨
⎪⎩

t1∫
t2+pT

(
µm

(
u∗(t) + α(t) − 1

δ
ε0

)
Km + u∗(t) + α(t) − 1

δ
ε0

− (D + γ )

)
dt

⎫⎪⎬
⎪⎭

≤ ε0 exp(σ0T ). (3.7)

Obviously, choose constant M0 = exp(σ0T ), then from (3.7) we obtain a contradic-
tion. Hence, we have x(t) ≤ ε0 M0 for all t ≥ t∗. Since ε0 is arbitrary, we finally
have

lim
t→∞ x(t) = 0.

This completes the proof of Theorem 3.1. 	

Next, we discuss the permanence of system (1.1), we have the following result.

Theorem 3.2 System (1.1) is permanent, if

T∫
0

(
µmu∗(t)

Km + u∗(t)
− (D + γ )

)
dt > 0.
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Proof Let (S(t), x(t))be any solution of system (1.1) with initial value (S(0+), x(0+))

∈ R2+. From Lemma 2.3, without loss of generality, we can assume S(t) ≤ M and
x(t) ≤ M for all t ≥ 0. From the first equation of system (1.1) we obtain

S′(t) ≥ −DS(t) − µm S(t)x(t)

δ(Km + S(t))

> −DS(t) − µm M S(t)

δKm

= −
(

D + µm M

δKm

)
S(t), t �= nT,

S(t+) = S(t) + DS0, t = nT .

Using Lemma 2.2 and the comparison theorem of impulsive differential equation, we
obtain S(t) ≥ v(t) for all t ≥ 0, where v(t) is the solution of the following impulsive
equation

v′(t) = −
(

D + µm M

δKm

)
v(t), t �= nT,

v(t+) = v(t) + DS0, t = nT

with initial condition v(0+) = S(0+). Further from Lemma 2.2, we have

lim
t→∞ v(t) = v∗(t),

where

v∗(t) =
DS0 exp

{
−

(
D + µm M

δKm

)
(t − nT )

}

1 − exp
{
−

(
D + µm M

δKm

)
T

} .

Therefore, we further obtain

lim inf
t→∞ S(t) ≥ lim inf

t→∞ v(t) = lim inf
t→∞ v∗(t)

≥
DS0 exp

(
−

(
D + µm M

δKm

)
T

)

1 − exp
(
−

(
D + µm M

δKm

)
T

) .

This shows that S(t) in system (1.1) is permanent.
Next, we prove that there exists a constant m2 > 0 such that

lim inf
t→∞ x(t) ≥ m2
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for any positive solution (S(t), x(t)) of system (1.1). From

T∫
0

(
µmu∗(t)

Km + u∗(t)
− (D + γ )

)
dt > 0,

we can choose a constant ε0 > 0 small enough such that

σ �
T∫

0

(
µm(u∗(t) − ε0)

Km + u∗(t) − ε0
− (D + γ )

)
dt > 0.

Consider the following auxiliary impulsive equation

y′(t) = −y
(

D + m3µm
δKm

)
, t �= nT

y(t+) = y(t) + DS0, t = nT,
(3.8)

from Lemma 2.2, Eq. 3.8 have a globally uniformly attractive T -periodic positive
solution

y∗(t) =
DS0 exp

{
−

(
D + m3µm

δKm

)
(t − nT )

}

1 − exp
{
−

(
D + m3µm

δKm

)
T

} , t ∈ (nT, (n + 1)T ], n ∈ N .

Since limm3→0 y∗(t) = u∗(t), for above ε0 > 0 there is a m3 > 0 such that

y∗(t) ≥ u∗(t) − ε0

2
(3.9)

for t ≥ 0. Further, for above ε0 > 0 and M > 0, there is a T0 = T0(ε2, M) > 0 such
that for any t0 ≥ 0 and 0 ≤ y0 ≤ M we have

|y(t, t0, y0) − y∗(t)| <
ε0

2
(3.10)

for all t ≥ t0 + T0, where y(t, t0, y0) is the solution of Eq. 3.8 with initial condition
y(t∗0 ) = y0

For any t0 ≥ 0, if x(t) ≤ m3 for all t ≥ t0, then from system (1.1) we have

S′(t) ≥ −S(t)

(
D + m3µm

δKm

)
, t �= nT,

S(t+) = S(t) + DS0, t = nT, n ∈ N

for all t ≥ t0. By the comparison theorem of impulse differential equation, we have
S(t) ≥ y(t) for t ≥ t0, where y(t) is the solution of Eq. 3.8 with initial condition

123



286 J Math Chem (2010) 47:276–294

y(t+0 ) = S(t+0 ). Directly from (3.10) we obtain

|y(t) − y∗(t)| <
ε0

2
for all t ≥ t0 + T0.

Hence, from (3.9) we further have

S(t) ≥ S∗(t) − ε0 for all t ≥ t0 + T0.

From the second equation of system (1.1) we have

x ′(t) ≥ x(t)

(
µm(u∗(t) − ε0)

Km + u∗(t) − ε0
− (D + γ )

)
(3.11)

for all t ≥ t0 + T0.
Let n0 ∈ N such that n0T > t0 + T0. Integrating (3.11) on (nT, (n + 1)T ] for all

n ≥ n0, we have

x((n + 1)T ) ≥ x(nT +) exp

⎧⎨
⎩

(n+1)T∫
nT

(
µm(u∗(t) − ε0)

Km + u∗(t) − ε0
− (D + γ )

)
dt

⎫⎬
⎭

= x(nT )eσ .

Hence, x((n0 + k)T ) ≥ x(n0T )ekσ for all k ≥ 0. Consequently, we have limt→∞ x
((n0 +k)T ) = ∞, which leads to a contradiction. Therefore, there exists a t1 > t0 +T0
such that x(t1) ≥ m3.

If x(t) ≥ m3 for all t ≥ t1, then the conclusion of Theorem 3.2 is proved. Hence,
we need only to consider those solution (S(t), x(t)) of system (1.1) such that x(t) is
oscillatory about m3.

Let t1 and t2 be two large enough times such that x(t1) = x(t2) = m3 and x(t) < m3
for all t ∈ (t1, t2). When t2 − t1 ≤ T0, since

x ′(t) ≥ −(D + γ )x(t) for all t ∈ (t1, t2),

integrating this inequality for any t ∈ [t1, t2], we have

x(t) ≥ x(t1) exp

⎧⎨
⎩

t∫
t1

−(D + γ )dv

⎫⎬
⎭

≥ m3 exp{−(D + γ )T0}
� m∗

2. (3.12)

Let t1 − t2 > T0. For any t ∈ [t1, t2], if t ≤ t1 + T0, then according to the above
discussing on the case of t2 − t1 ≤ T0, we also have inequality (3.12). Particularly,
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we obtain x(t1 + T0) ≥ m∗
2. Since x(t) ≤ m3 for all t ∈ [t1, t2], from system (1.1) we

have

S′(t) ≥ −S(t)

(
D + m3µm

δKm

)
, t �= nT,

S(t+) = S(t) + DS0, t = nT .

Hence, from the comparison theorem of impulsive differential equations we have
S(t) ≥ y(t) for all t ∈ [t1, t2], when y(t) is the solution of Eq. 3.8 with initial
condition y(t+1 ) = S(t+1 ). From (3.10) we directly obtain

y(t) ≥ y∗(t) − ε0

2
for all t ∈ [t1 + T0, t2].

Further, from (3.9) we also have

S(t) ≥ u∗(t) − ε0 for all t ∈ [t1 + T0, t2].

Therefore, from system (1.1) we further have

x ′(t) ≥ x(t)

(
µm(S∗(t) − ε0)

Km + S∗(t) − ε0
− (D + γ )

)
for all t ∈ [t0 + T0, t2]. (3.13)

For any t ∈ [t1 + T0, t2], we choose an integer p ≥ 0 such that t ∈ [t1 + T0 + pT, t1 +
T0 + (p + 1)T ]. Integrating inequality (3.13) from t1 + T0 to t , we can obtain

x(t) = x(t1 + T0) exp

⎧⎪⎨
⎪⎩

t∫
t1+T0

(
µm(S∗(v) − ε0)

Km + S∗(v) − ε0
− (D + γ )

)
dv

⎫⎪⎬
⎪⎭

≥ m∗
2 exp

⎧⎪⎨
⎪⎩

t1+T0+pT∫
t1+T0

+
t∫

t1+T0+pT

(
µm(S∗(v) − ε0)

Km + S(v) − ε0
− (D + γ )

)
dv

⎫⎪⎬
⎪⎭

≥ m∗
2 exp

⎧⎪⎨
⎪⎩

t∫
t1+T0+pt

(
µm(S∗(v) − ε0)

Km + S∗(v) − ε0
− (D + γ )

)
dv

⎫⎪⎬
⎪⎭

≥ m∗
2 exp{−hT }

� m2

where

h = sup
t≥0

{
µm(u∗(t) − ε0)

Km + u∗(t) − ε0
− (D + γ )

}
.
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From above discussions, we finally obtain

lim inf
t→∞ x(t) ≥ m2,

and m2 is independent of any solution (S(t), x(t)) of system (1.1). This completes the
proof of Theorem 3.2. 	


As a consequence of Theorems 3.1 and 3.2, we have the following corollary.

Corollary 3.1 For system (1.1), the following conclusions hold.

(a) (u∗(t), 0) is globally attractive if and only if

T∫
0

(
µmu∗(t)

Km + u∗(t)
− (D + γ )

)
dt ≤ 0.

(b) System (1.1) is permanent if and only if

T∫
0

(
µmu∗(t)

Km + u∗(t)
− (D + γ )

)
dt > 0.

Now, we discuss the global attractivity of all positive solutions of system (1.1), we
have the following result.

Theorem 3.3 Suppose for system (1.1)

T∫
0

(
µmu∗(t)

Km + u∗(t)
− (D + γ )

)
dt > 0 (3.14)

and

DK 2
m

δ(Km + M)2 − γ

(
1

δ
− b

)
> 0, (3.15)

where M = DS0

1−e−DT . Then for any two positive solutions (S1(t), x1(t)) and (S2(t),
x2(t)) of system (1.1)

lim
t→∞(S1(t) − S2(t)) = 0, lim

t→∞(x1(t) − x2(t)) = 0.

Proof From condition (1), we directly have

DKm

µm
>

γ
( 1

δ
− b

)
δ(Km + M)2

µm Km
.
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Hence, there is a constant c > 0 such that

D − cµm

Km
> 0,

cµm Km

δ(Km + M)2 − γ

(
1

δ
− b

)
> 0.

Further, we can choose a constant ε0 > 0 such that

D − cµm

Km
> 0,

cµm Km

δ(Km + M + ε0)2 − γ

(
1

δ
− b

)
> 0. (3.16)

Let V = S + 1
δ

x , then system (1.1) is equivalent to the following system

V ′(t) = −DV (t) + γ
(
b − 1

δ

)
x(t), t �= nT,

x ′(t) = x(t)

(
µm (V (t)− 1

δ
x(t))

Km+V (t)− 1
δ

x(t)
− (D + γ )

)
, t �= nT,

V (t+) = V (t) + DS0, t = nT,

x(t+) = x(t), t = nT .

(3.17)

Let (S1(t), x1(t)) and (S2(t), x2(t)) be any two positive solutions of system (1.1),
from Lemma 2.2 and Theorem 3.2 we have that there is a constant m > 0 such that

m ≤ lim inf
t→∞ Si (t) ≤ lim sup

t→∞
Si (t) ≤ M

and

m ≤ lim inf
t→∞ xi (t) ≤ lim sup

t→∞
xi (t) ≤ δM

for i = 1, 2. Hence, there exists a T > 0 such that

Si (t) ≤ M + ε0, xi (t) ≥ 1

2
m for all t ≥ T . (3.18)

let Vi (t) = Si (t) + 1
δ

xi (t) (i = 1, 2), then (Vi (t), xi (t)) is the solution of system
(3.17). Define the Liapunov function as follows

U (t) = |V1(t) − V2(t)| + c| ln x1(t) − ln x2(t)|.

From (3.18) and the theorem of mean value we can obtain

|x1(t) − x2(t)| ≥ 1

2
m| ln x1(t) − ln x2(t)| (3.19)
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and

µm S1(t)

Km + S1(t)
− µm S1(t)

Km + S1(t)
= µm Km

(Km + ξ(t))2 (S1(t) − S2(t)), (3.20)

for all t ≥ T , where ξ(t) is situated between S1(t) and S2(t).
Calculating the Dini derivative of U (t), from (3.19) and (3.20) we obtain for any

t ≥ 0 and t �= nT

U̇ (t) = sign(V1(t) − V2(t))

(
−D(V1(t) − V2(t)) + γ

(
b − 1

δ

)
(x1(t) − x2(t))

)

+c sign(x1(t) − x2(t))

(
µm

(
V1(t) − 1

δ
x1(t)

)
Km + V1(t) − 1

δ
x1(t)

− µm
(
V2(t) − 1

δ
x2(t)

)
Km + V2(t) − 1

δ
x2(t)

)

≤ −D|V1(t) − V2(t)| + γ

(
1

δ
− b

)
|x1(t) − x2(t)| + c sign(x1(t)

−x2(t))
µm Km

(Km + ξ(t))2

(
V1(t) − V2(t) − 1

δ
(x1(t) − x2(t))

)

≤ −D|V1(t) − V2(t)| + γ

(
1

δ
− b

)
|x1(t) − x2(t)| + cµm

Km
|V1(t) − V2(t)|

− cµm Km

δ(Km + M + ε0)2 |x1(t) − x2(t)| ≤ αU (t),

where

α = min

{
D − cµ

Km
,

m

2c

(
cµm Km

δ(Km + M + ε0)2 − γ

(
1

δ
− b

))}

and from (3.16) we obtain α > 0. On the other hand, we directly

U (t+) = U (t) for all t = nT, n ∈ N .

Hence, for any t > 0 we have

U (t) ≤ U (0) exp(−αt).

Consequently, limt→∞ U (t) = 0. From this, we finally obtain

lim
t→∞(S1(t) − S2(t)) = 0, lim

t→∞(x1(t) − x2(t)) = 0.

This completes the proof of Theorem 3.3. 	
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When γ = 0, then system (1.1) degenerate to the following system without nutrient
recycling

S′(t) = −DS(t) − µm S(t)x(t)
δ(Km+S(t)) , t �= nT,

x ′(t) = µm S(t)x(t)
Km+S(t) − Dx(t), t �= nT,

S(t+) = S(t) + DS0, t = nT,

x(t+) = x(t), t = nT .

(3.21)

We see that condition (3.15) always holds. Hence, from Theorems 3.1–3.3 we can
obtain the following results.

Corollary 3.2 For system (3.21), the following conclusions hold.

(a) (u∗(t), 0) is globally attractive if and only if

T∫
0

(
µmu∗(t)

Km + u∗(t)
− D

)
dt ≤ 0.

(b) System (3.21) is permanent and globally attractive if and only if

T∫
0

(
µmu∗(t)

Km + u∗(t)
− D

)
dt > 0.

Remark 3.1 Obviously, Corollary 3.2 is an very good improvement and extension of
the corresponding results given in [19], see Theorems 3.1–3.3 in [19].

Remark 3.2 When γ > 0 and b = 1
δ
, we see that condition (3.15) also holds. Hence,

system (1.1) is globally attractive so long as condition (3.14) holds. Therefore, an
important and interesting open problem is proposed here, that is, when γ > 0 and
b < 1

δ
whether system (1.1) also is globally attractive so long as condition (3.14)

holds.

4 An example

In this section, we will give an example to show that if the condition (3.14) holds, but
condition (3.15) does not hold, then system (1.1) still is globally asymptotically stable.

We consider the following special case of system (1.1)

S′(t) = −S(t) − 12S(t)x(t)

0.7(8 + S(t))
+ 0.6 × 0.3x(t), t �= 2n,

x ′(t) = 12S(t)x(t)

8 + S(t)
− (1 + 0.3)x(t), t �= 2n,

S(t+) = S(t) + 10, t = 2n,

x(t+) = x(t), t = 2n,

(3.22)
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that is, in system (1.1) we take

D = 1, µm = 12, Km = 8, δ = 0.7, b = 0.6, γ = 0.3, S0 = 10, T = 2.

By calculating, we obtain

δ(Km + M)2γ

(
1

δ
− b

)
= 66.6065, D(Km)2 = 64,

u∗(t) = 10e−(t−2n)

1 − e−2 , t ∈ (2n, 2(n + 1)], n ∈ N

and

2∫
0

(
µmu∗(t)

Km + u∗(t)
− (D + γ )

)
dt = 5.9875.

Therefore, conditions (3.14) holds, but (3.15) does not hold. But, we choose initial
value

(S0, x0) = (1, 3.5), (3, 3.0), (5, 2.5), (7, 2.0), (9, 1.5), (11, 1.0), (13, 0.5),

respectively, then from the numerical simulation (see Figs. 1, 2) we see that there exists
a unique positive T -periodic solution (S∗(t), x∗(t)) of system (3.22) such that any
solution (S(t), x(t)) of system (3.22) with initial value (S0, x0) tend to (S∗(t), x∗(t))
as t → ∞. Therefore, we can guess that if only condition (3.14) holds then system
(3.22) has a unique positive T -periodic solution which is globally attractive
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Fig. 1 Time series of S(t)
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